思科网站建设配置站点dns服务网站备案vpn注销

张小明 2026/1/2 22:43:45
思科网站建设配置站点dns服务,网站备案vpn注销,无锡市住房和城乡建设部网站,东莞推广seo关键词排名优化简单易懂#xff0c;谷歌发布生成式AI智能体白皮书谷歌终于发布了官方AI Agent白皮书#xff0c;快来一起研读谷歌发布的AI Agent白皮书#xff0c;了解智能体一定不要错过谷歌官方出品的AI Agent白皮书#xff0c;简单易懂的智能体认知架构2025智能体商用元年来袭#xf…简单易懂谷歌发布生成式AI智能体白皮书谷歌终于发布了官方AI Agent白皮书快来一起研读谷歌发布的AI Agent白皮书了解智能体一定不要错过谷歌官方出品的AI Agent白皮书简单易懂的智能体认知架构2025智能体商用元年来袭谷歌40页AI Agent白皮书深度认知行业随着AI Agent市场的越发火爆为了让用户全面了解AI Agent并积极参与生态构建一些公司相继推出了官方智能体相关的解读及白皮书。继Anthropic之后就在这几天谷歌发也发布了自己的AI Agent白皮书。这份名字简单到只有一个单词《Agents》的白皮书从谷歌角度探讨了生成式AI Agent智能体的概念、架构和应用阐明了Agent区别于单纯模型的关键在于其能够利用工具访问外部信息并进行自主推理和行动规划而非仅仅依赖训练数据进行单次预测。白皮书详细介绍了Agent的三个核心组成部分模型Language Model、工具Extensions, Functions, Data Stores和编排层Orchestration Layer。编排层利用各种推理框架如ReAct, Chain-of-Thought, Tree-of-Thoughts指导Agent的决策过程。工具则赋予Agent与外部世界交互的能力Extensions连接Agent与APIFunctions允许客户端控制API调用Data Stores则提供对外部数据的访问支持RAG等应用。该白皮书还介绍了在LangChain和Vertex AI平台上构建和部署Agent的方法并讨论了如何通过各种学习方法如上下文学习、基于检索的上下文学习和微调提升模型性能。白皮书旨在系统性地讲解生成式AIAgent的原理、架构和应用实践为开发者提供构建更强大、更灵活的AI系统的指导。如果你还不了解AI Agent及其工作原理谷歌这份白皮书是必读的。它涵盖了你需要了解的关于AI Agent概念、它如何工作、LLMS 和 langchain 实现的所有内容初学者和高级玩家都能从中受益。建议大家好好研读该白皮书对于深入理解AI Agent有很好的帮助。同时为大家准备了白皮书英文版与翻译版方便大家详细参阅。记得后台发消息GAgent获取该资源。以下是王吉伟频道总结的白皮书主要观点省流版一、Agents概述从最根本的意义上讲生成式AI Agents智能体可以被定义为一种应用程序它通过观察世界并利用其可支配的工具来采取行动以实现某个目标。智能体具有自主性可以独立于人类干预而行动尤其是在被赋予了它们要实现的适当目标或目的时。智能体在实现目标的方法上也可以采取积极主动的态度。即使在没有人类明确指令的情况下智能体也可以推理出为实现其最终目标而应采取的下一步行动。虽然AI中的智能体概念相当普遍且强大但白皮书重点关注的是在发布时生成式AI模型能够构建的特定类型的智能体。为了理解智能体的内部工作原理白皮书介绍了驱动智能体行为、动作和决策的基础组件。这些组件的组合可以描述为一种认知架构通过混合和匹配这些组件可以实现许多这样的架构。聚焦于核心功能如图1所示智能体的认知架构中有三个基本组件模型、编排层和工具。在agent的范围内模型指的是将作为agent流程的集中决策者使用的语言模型LM。agent使用的模型可以是一个或多个LM其大小可以是任何规模小/大能够遵循基于指令的推理和逻辑框架如ReAct、思维链Chain-of-Thought或思维树Tree-of-Thoughts。生成式AI Agent扩展了语言模型的功能利用工具获取实时信息、建议现实世界行动并自主规划和执行复杂任务。Agent可以利用一个或多个语言模型来决定何时以及如何进行状态转换并使用外部工具完成模型自身难以或无法完成的各种复杂任务。Agent的核心是编排层它是一种认知架构用于构建推理、规划、决策并指导其行动。各种推理技术例如 ReAct、思维链和思维树为编排层提供了接收信息、执行内部推理以及生成明智决策或响应的框架。工具如扩展程序、函数和数据存储充当Agent通往外部世界的钥匙使其能够与外部系统交互并获取训练数据之外的知识。扩展程序在Agent和外部API之间架起桥梁支持执行 API 调用和检索实时信息。函数通过分工提供更细致的开发者控制允许Agent生成可在客户端执行的函数参数。数据存储为Agent提供对结构化或非结构化数据的访问从而实现数据驱动的应用程序。二、 Agent与模型的比较特性模型Agent知识范围受限于训练数据通过工具连接外部系统扩展知识推理模式基于用户查询进行单次推理/预测缺乏会话历史或持续上下文管理管理会话历史例如聊天记录允许多轮推理/预测并根据用户查询和编排层中的决策进行调整工具支持无原生工具实现原生支持工具实现逻辑层无原生逻辑层。用户需通过简单问题或推理框架CoT、ReAct 等构建提示来指导模型预测具有原生认知架构使用推理框架如 CoT、ReAct或其他预构建Agent框架如LangChain。三、认知架构Agent如何运作Agent如同一位忙碌的厨师其目标是为顾客制作美味佳肴。他们需要经历计划、执行和调整的循环搜集信息如顾客的订单和厨房里的食材。根据收集到的信息进行内部推理思考可以制作哪些菜肴和口味。采取行动制作菜肴切菜、混合香料、煎肉。Agent利用认知架构通过迭代处理信息、做出明智的决策以及根据先前输出改进后续行动来实现其最终目标。图2在编排层采用ReAct推理的实例agentAgent认知架构的核心是编排层负责维护记忆、状态、推理和规划。它使用快速发展的提示工程领域和相关框架来指导推理和规划使Agent能够更有效地与其环境交互并完成任务。四、工具通往外部世界的钥匙虽然语言模型擅长处理信息但它们缺乏直接感知和影响现实世界的能力。工具弥合了这一差距使Agent能够与外部数据和服务交互并解锁模型本身无法实现的更广泛的行动。工具有多种形式复杂程度各不相同但通常与常见的 Web API 方法如 GET、POST、PATCH 和 DELETE一致。例如工具可以更新数据库中的客户信息或获取天气数据以影响Agent向用户提供的旅行建议。截至本文发布之日Google 模型能够与三种主要工具类型进行交互扩展程序、函数和数据存储。通过为Agent配备工具我们释放了它们理解世界并采取行动的巨大潜力为无数新的应用和可能性打开了大门。五、扩展程序扩展程序以标准化方式弥合了 API 和Agent之间的差距使Agent能够无缝执行 API而无需考虑其底层实现。例如在航班预订用例中用户可能会说“我想预订从奥斯汀飞往苏黎世的航班”。在这种情况下自定义代码解决方案需要从用户查询中提取“奥斯汀”和“苏黎世”作为相关实体然后尝试进行 API 调用。图3agents如何与外部API进行交互但是如果用户说“我想预订飞往苏黎世的航班”而从未提供出发城市该怎么办如果没有所需数据API 调用将失败并且需要实现更多代码来捕获此类边缘情况和极端情况。这种方法不可扩展并且很容易在任何超出已实现自定义代码的场景中崩溃。扩展程序通过以下方式弥合了Agent和 API 之间的差距使用示例教导Agent如何使用 API 端点。教导Agent成功调用 API 端点所需的参数。图5Agents、扩展和API之间的1对多关系扩展程序可以独立于Agent制作但应作为Agent配置的一部分提供。Agent在运行时使用模型和示例来决定哪个扩展程序如果有适合解决用户的查询。这突出了扩展程序的一个关键优势即其内置示例类型它允许Agent动态地选择最适合该任务的扩展程序。六、函数在软件工程领域函数被定义为自包含的代码模块它们完成特定的任务并且可以根据需要重复使用。当软件开发人员编写程序时他们通常会创建许多函数来执行各种任务。他们还将定义何时调用 function_a 与 function_b 的逻辑以及预期的输入和输出。函数在Agent世界中的工作方式非常相似但我们可以用模型替换软件开发人员。模型可以获取一组已知函数并根据其规范决定何时使用每个函数以及函数需要哪些参数。函数与扩展程序的区别主要体现在以下几个方面模型输出一个函数及其参数但不会进行实时 API 调用。函数在客户端执行而扩展程序在Agent端执行。图7函数如何与外部API进行交互使用函数的一个关键点是它们旨在让开发人员能够更好地控制 API 调用的执行以及整个应用程序中的整个数据流。在示例中开发人员选择不将 API 信息返回给Agent因为它与Agent可能采取的未来行动无关。但是根据应用程序的架构将外部 API 调用数据返回给Agent可能是有意义的以便影响未来的推理、逻辑和行动选择。最终由应用程序开发人员来选择最适合特定应用程序的方法。七、数据存储数据存储通过提供对更动态和最新信息的访问来解决这一限制并确保模型的响应基于事实和相关性。数据存储允许开发人员以其原始格式向Agent提供额外的数据从而无需进行耗时的数据转换、模型再训练或微调。数据存储将传入的文档转换为一组向量数据库嵌入Agent可以使用这些嵌入来提取补充其下一步操作或对用户响应所需的信息。图11数据存储将agents与各种类型的新实时数据源连接起来在生成式 AI Agent的上下文中数据存储通常被实现为开发人员希望Agent在运行时访问的向量数据库。虽然我们不会在这里深入介绍向量数据库但要理解的关键点是它们以向量嵌入的形式存储数据向量嵌入是一种提供的数据的高维向量或数学表示。Agent工具类型扩展、函数和数据存储构的区别总的来说扩展、函数和数据存储构成了agent在运行时可以使用的几种不同工具类型。每种工具都有其特定用途并且可以根据agent开发者的意愿选择一起使用或单独使用。八、用目标学习增强模型性能有效使用模型的一个关键方面是它们在生成输出时选择正确工具的能力尤其是在生产中大规模使用工具时。虽然通用训练有助于模型发展这种技能但现实世界的场景通常需要超出训练数据的知识。为了帮助模型获得这种特定知识存在几种方法**上下文学习**此方法在推理时为广义模型提供提示、工具和少样本示例使其能够“动态”学习如何以及何时将这些工具用于特定任务。ReAct 框架是这种方法在自然语言中的一个例子。**基于检索的上下文学习**此技术通过从外部内存中检索最相关的信息、工具和相关示例来动态填充模型提示。Vertex AI 扩展程序中的“示例存储”或前面提到的数据存储 RAG 架构就是一个例子。**基于微调的学习**此方法涉及在推理之前使用更大的特定示例数据集来训练模型。这有助于模型在接收任何用户查询之前了解何时以及如何应用某些工具。九、使用 LangChain快速入门Agent为了提供Agent实际运行的可执行示例我们将使用 LangChain 和 LangGraph 库构建一个快速原型。这些流行的开源库允许用户通过将逻辑、推理和工具调用的序列“链接”在一起来构建客户Agent以回答用户的查询。虽然这是一个相当简单的Agent示例但它展示了模型、编排和工具等基本组件如何协同工作以实现特定目标。在最后一节中我们将探讨这些组件如何在 Google 规模的托管产品如 Vertex AI Agent和 Generative Playbooks中组合在一起。十、使用Vertex AI Agent的生产应用程序虽然本白皮书探讨了Agent的核心组件但构建生产级应用程序需要将它们与其他工具如用户界面、评估框架和持续改进机制集成在一起。Google 的 Vertex AI 平台通过提供一个完全托管的环境包含前面介绍的所有基本元素来简化此过程。使用自然语言界面开发人员可以快速定义其Agent的关键元素目标、任务说明、工具、用于任务委托的子Agent以及示例以轻松构建所需的系统行为。图15基于Vefiex AI平台构建的端到端agent架构示例此外该平台还配备了一套开发工具允许进行测试、评估、测量Agent性能、调试以及改进已开发Agent的整体质量。这使得开发人员能够专注于构建和改进其Agent而平台本身则负责管理基础设施、部署和维护的复杂性。总结Agent的未来充满了令人兴奋的进步我们才刚刚开始触及可能的表面。随着工具变得越来越复杂推理能力得到增强Agent将能够解决越来越复杂的问题。此外“Agent链接”的战略方法将继续获得发展势头。通过将专门的Agent每个Agent都擅长于特定领域或任务组合在一起我们可以创建一种“Agent专家混合”方法能够在各个行业和问题领域提供卓越的结果。重要的是要记住构建复杂的Agent架构需要迭代方法。实验和改进是为特定业务案例和组织需求找到解决方案的关键。由于构成其架构基础的基本模型的生成性质没有两个Agent是完全相同的。但是通过利用每个基本组件的优势我们可以创建有影响力的应用程序扩展语言模型的功能并推动现实世界的价值。想入门 AI 大模型却找不到清晰方向备考大厂 AI 岗还在四处搜集零散资料别再浪费时间啦2025 年AI 大模型全套学习资料已整理完毕从学习路线到面试真题从工具教程到行业报告一站式覆盖你的所有需求现在全部免费分享扫码免费领取全部内容​一、学习必备100本大模型电子书26 份行业报告 600 套技术PPT帮你看透 AI 趋势想了解大模型的行业动态、商业落地案例大模型电子书这份资料帮你站在 “行业高度” 学 AI1. 100本大模型方向电子书2. 26 份行业研究报告覆盖多领域实践与趋势报告包含阿里、DeepSeek 等权威机构发布的核心内容涵盖职业趋势《AI 职业趋势报告》《中国 AI 人才粮仓模型解析》商业落地《生成式 AI 商业落地白皮书》《AI Agent 应用落地技术白皮书》领域细分《AGI 在金融领域的应用报告》《AI GC 实践案例集》行业监测《2024 年中国大模型季度监测报告》《2025 年中国技术市场发展趋势》。3. 600套技术大会 PPT听行业大咖讲实战PPT 整理自 2024-2025 年热门技术大会包含百度、腾讯、字节等企业的一线实践安全方向《端侧大模型的安全建设》《大模型驱动安全升级腾讯代码安全实践》产品与创新《大模型产品如何创新与创收》《AI 时代的新范式构建 AI 产品》多模态与 Agent《Step-Video 开源模型视频生成进展》《Agentic RAG 的现在与未来》工程落地《从原型到生产AgentOps 加速字节 AI 应用落地》《智能代码助手 CodeFuse 的架构设计》。二、求职必看大厂 AI 岗面试 “弹药库”300 真题 107 道面经直接抱走想冲字节、腾讯、阿里、蔚来等大厂 AI 岗这份面试资料帮你提前 “押题”拒绝临场慌1. 107 道大厂面经覆盖 Prompt、RAG、大模型应用工程师等热门岗位面经整理自 2021-2025 年真实面试场景包含 TPlink、字节、腾讯、蔚来、虾皮、中兴、科大讯飞、京东等企业的高频考题每道题都附带思路解析2. 102 道 AI 大模型真题直击大模型核心考点针对大模型专属考题从概念到实践全面覆盖帮你理清底层逻辑3. 97 道 LLMs 真题聚焦大型语言模型高频问题专门拆解 LLMs 的核心痛点与解决方案比如让很多人头疼的 “复读机问题”三、路线必明 AI 大模型学习路线图1 张图理清核心内容刚接触 AI 大模型不知道该从哪学起这份「AI大模型 学习路线图」直接帮你划重点不用再盲目摸索路线图涵盖 5 大核心板块从基础到进阶层层递进一步步带你从入门到进阶从理论到实战。L1阶段:启航篇丨极速破界AI新时代L1阶段了解大模型的基础知识以及大模型在各个行业的应用和分析学习理解大模型的核心原理、关键技术以及大模型应用场景。L2阶段攻坚篇丨RAG开发实战工坊L2阶段AI大模型RAG应用开发工程主要学习RAG检索增强生成包括Naive RAG、Advanced-RAG以及RAG性能评估还有GraphRAG在内的多个RAG热门项目的分析。L3阶段跃迁篇丨Agent智能体架构设计L3阶段大模型Agent应用架构进阶实现主要学习LangChain、 LIamaIndex框架也会学习到AutoGPT、 MetaGPT等多Agent系统打造Agent智能体。L4阶段精进篇丨模型微调与私有化部署L4阶段大模型的微调和私有化部署更加深入的探讨Transformer架构学习大模型的微调技术利用DeepSpeed、Lamam Factory等工具快速进行模型微调并通过Ollama、vLLM等推理部署框架实现模型的快速部署。L5阶段专题集丨特训篇 【录播课】四、资料领取全套内容免费抱走学 AI 不用再找第二份不管你是 0 基础想入门 AI 大模型还是有基础想冲刺大厂、了解行业趋势这份资料都能满足你现在只需按照提示操作就能免费领取扫码免费领取全部内容​2025 年想抓住 AI 大模型的风口别犹豫这份免费资料就是你的 “起跑线”
版权声明:本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若内容造成侵权/违法违规/事实不符,请联系邮箱:809451989@qq.com进行投诉反馈,一经查实,立即删除!

实用又有创意的设计广州优化公司推广

Kotaemon文档中心上线:完整API参考与示例代码开放 在企业智能化转型的浪潮中,越来越多组织开始尝试将大语言模型(LLM)引入客服、知识管理和内部协作系统。然而,理想很丰满,现实却常常骨感——许多AI项目在原…

张小明 2026/1/1 9:57:33 网站建设

烟台做网站联系电话cps广告是什么意思

一、XSS攻击验证概述 跨站脚本攻击(Cross-Site Scripting, XSS)是一种通过向Web页面注入恶意脚本,从而在用户浏览器端执行攻击代码的安全漏洞。作为OWASP Top 10常年位列前三的高危漏洞,XSS验证要求测试人员深入理解其攻击向量与…

张小明 2026/1/1 23:53:29 网站建设

网页制作技巧有哪些seo管理系统易语言

第一章:金融交易Agent执行速度的演进与挑战在高频交易和算法金融日益发展的背景下,金融交易Agent的执行速度已成为决定市场竞争力的核心因素。从早期基于批处理的交易系统,到如今微秒级响应的智能代理架构,执行效率的提升推动了整…

张小明 2026/1/1 23:12:11 网站建设

网站开发怎么找客户在线做高中试卷的网站

"又要手动生成几百个MIDI文件,这得搞到什么时候啊?" 🎵 如果你也曾经对着MIDI批量处理任务发愁,那么今天这篇文章就是为你准备的。 【免费下载链接】atm-cli Command line tool for generating and working with MIDI f…

张小明 2026/1/2 11:56:41 网站建设

微信上的网站怎么做网站建设怎样避免犯法

运维太苦了,别硬扛!转网安才是 “越老越吃香” 的破局路! “IT圈最闲的是运维”?说这话的人,肯定没熬过运维的夜。 凌晨 3 点的手机铃声,不是家人的关心,是服务器告警的 “催命符”&#xff0c…

张小明 2025/12/31 10:51:52 网站建设

张店网站推广营销推广方法有哪些

Vkvg:如何用Vulkan实现高性能2D图形渲染 【免费下载链接】vkvg Vulkan 2D graphics library 项目地址: https://gitcode.com/gh_mirrors/vk/vkvg 在现代图形应用开发中,如何平衡渲染性能与开发效率一直是技术决策者和开发者面临的挑战。Vkvg作为基…

张小明 2026/1/2 7:24:33 网站建设